228 research outputs found

    A note on maximal estimates for stochastic convolutions

    Get PDF
    In stochastic partial differential equations it is important to have pathwise regularity properties of stochastic convolutions. In this note we present a new sufficient condition for the pathwise continuity of stochastic convolutions in Banach spaces.Comment: Minor correction

    Anomalous diffusion in polymers: long-time behaviour

    Full text link
    We study the Dirichlet boundary value problem for viscoelastic diffusion in polymers. We show that its weak solutions generate a dissipative semiflow. We construct the minimal trajectory attractor and the global attractor for this problem.Comment: 13 page

    Hysteresis and hierarchies: dynamics of disorder-driven first-order phase transformations

    Full text link
    We use the zero-temperature random-field Ising model to study hysteretic behavior at first-order phase transitions. Sweeping the external field through zero, the model exhibits hysteresis, the return-point memory effect, and avalanche fluctuations. There is a critical value of disorder at which a jump in the magnetization (corresponding to an infinite avalanche) first occurs. We study the universal behavior at this critical point using mean-field theory, and also present preliminary results of numerical simulations in three dimensions.Comment: 12 pages plus 2 appended figures, plain TeX, CU-MSC-747

    A Brownian motion version of the directed polymer problem

    Full text link
    Consider a Brownian particle in three dimensions in a random environment. The environment is determined by a potential random in space and time. It is shown that at small noise the large-time behavior of the particle is diffusive. The diffusion constant depends on the environment. This work generalizes previous results for random walk in a random environment. In these results the diffusion constant does not depend on the environment.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45170/1/10955_2005_Article_BF02179650.pd

    Hysteresis, Avalanches, and Disorder Induced Critical Scaling: A Renormalization Group Approach

    Full text link
    We study the zero temperature random field Ising model as a model for noise and avalanches in hysteretic systems. Tuning the amount of disorder in the system, we find an ordinary critical point with avalanches on all length scales. Using a mapping to the pure Ising model, we Borel sum the 6ϵ6-\epsilon expansion to O(ϵ5)O(\epsilon^5) for the correlation length exponent. We sketch a new method for directly calculating avalanche exponents, which we perform to O(ϵ)O(\epsilon). Numerical exponents in 3, 4, and 5 dimensions are in good agreement with the analytical predictions.Comment: 134 pages in REVTEX, plus 21 figures. The first two figures can be obtained from the references quoted in their respective figure captions, the remaining 19 figures are supplied separately in uuencoded forma
    corecore